\qquad

Chapter 1: Analysis of Pipeline and Pipe-Network HOMEWORK ASSIGNMENT 1

Due in Class on Saturday, June 13, 2020

- Read chapters 3 in Houghtalen et al (2010).
- Work and turn in problem 3.11.10 in Houghtalen et al (2010) and $\mathbf{3}$ problems given below:

1. Water is to be pumped through 1650 m of pipe from reservoir A to reservoir B at a rate of $80 \mathrm{l} / \mathrm{s}$, as shown in figure. Entrance loss coefficient is 0.8 . If the pipe is cast iron ($\varepsilon=0.26 \mathrm{~mm}$) of diameter 16 cm and the pump is 75 percent efficient, what is the input power required?
Dynamic viscosity of water is $1.01 * 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$.

2. A $250-\mathrm{mm}$-diameter pipeline is 4.7 km long, as shown in figure below. Friction factor of pipe is 0.025 . When pumping $100 \mathrm{~L} / \mathrm{s}$ of water through it, with a total actual lift of $\mathrm{h}=10.5 \mathrm{~m}$, how much power is required? The pump efficiency is 75%. All minor head losses are negligible.

3. Water at $60^{\circ} \mathrm{C}$ flows in a straight 20 -mm-diameter pipe ($e=0.06 \mathrm{~mm}$) between points A and B 100 m apart. At A the elevation of the pipe is 54.1 m , and the pressure is 88.7 kPa . At B the elevation of the pipe is 52.0 m , and the pressure is 91.8 kPa . Compute the flow rate as accurately as you can.
